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Fine particle mass monitoring with low-cost sensors: Corrections and long-
term performance evaluation

Carl Malings� , Rebecca Tanzer, Aliaksei Hauryliuk, Provat K. Saha, Allen L. Robinson ,
Albert A. Presto , and R Subramanian

Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

ABSTRACT
Low-cost sensors for the measurement of fine particulate matter mass (PM2.5) enable dense
networks to increase the spatial resolution of air quality monitoring. However, these sensors
are affected by environmental factors such as temperature and humidity and their effects
on ambient aerosol, which must be accounted for to improve the in-field accuracy of these
sensors. We conducted long-term tests of two low-cost PM2.5 sensors: Met-One NPM and
PurpleAir PA-II units. We found a high level of self-consistency within each sensor type after
testing 25 NPM and 9 PurpleAir units. We developed two types of corrections for the low-
cost sensor measurements to better match regulatory-grade data. The first correction
accounts for aerosol hygroscopic growth using particle composition and corrects for particle
mass below the optical sensor size cut-point by collocation with reference Beta Attenuation
Monitors (BAM). A second, fully-empirical correction uses linear or quadratic functions of
environmental variables based on the same collocation dataset. The two models yielded
comparable improvements over raw measurements. Sensor performance was assessed for
two use cases: improving community awareness of air quality with short-term semi-quantita-
tive comparisons of sites and providing long-term reasonably quantitative information for
health impact studies. For the short-term case, both sensors provided reasonably accurate
concentration information (mean absolute error of �4mg/m3) in near-real time. For the
long-term case, tested using year-long collocations at one urban background and one near-
source site, error in the annual average was reduced below 1mg/m3. Hence, these sensors
can supplement sparse networks of regulatory-grade instruments, perform high-density
neighborhood-scale monitoring, and be used to better understand spatial patterns and tem-
poral air quality trends across urban areas.
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1. Introduction

The negative health impacts of exposure to particulate
matter (PM) smaller than 2.5 micrometers (PM2.5) are
well documented (e.g., Brook et al. 2010; Pope et al.
2002; Schwartz, Dockery, and Neas 1996). Even rela-
tively small changes in PM2.5 can have significant
impacts on human health and mortality (Lepeule et al.
2012). Reductions in PM2.5, even in low concentration
environments, can have substantial benefits (Apte
et al. 2015). Accurate monitoring of PM2.5 is thus
important for a variety of applications, including
long-term health studies, assessing the impacts of
technology and/or regulatory changes on emissions,
and supporting decision-making for future regulatory

efforts or to alter individual behavior in real-time.
Monitoring is especially of interest in urban areas
where the high density of exposed populations is
coupled with higher variability in PM due to the large
number and variety of sources (Eeftens et al. 2012;
Jerrett et al. 2005; Karner, Eisinger, and Niemeier
2010). Thus, a sparse monitoring network can lead to
an incomplete understanding of PM2.5 spatial variabil-
ity and its subsequent health impacts. Recent advances
in low-cost air quality sensing technologies have made
it feasible for dense networks of monitors to be
deployed in urban areas, providing a neighborhood-
scale understanding of air pollution (Snyder et al.
2013). Several pilot programs for monitoring air
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quality at such high spatial resolution using these
technologies are underway (English et al. 2017; Jiao
et al. 2016; Williams et al. 2018; Zimmerman
et al. 2018).

Most low-cost PM sensors make use of optical
measurement techniques (Kelly et al. 2017; Rai et al.
2017; Wang et al. 2015). It is well-known that these
optical methods do not generally agree with measure-
ments obtained from instruments operating on differ-
ent principles (Burkart et al. 2010; Chow et al. 2008;
Solomon and Sioutas 2008; Watson et al. 1998;
Wilson et al. 2002). For example, work with low-cost
optical PM2.5 sensors (Plantower model PMS3003)
showed good correlation (r of 0.8) with a scattered
light spectrometer versus low correlation (r of 0.5)
with a beta attenuation monitoring (BAM) instrument
(Zheng et al. 2018). There are several reasons for these
disagreements. First, for regulatory-grade instruments,
PM must be reported under specific temperature
(20–23 �C) and humidity (30–40%) conditions (US
EPA 2016b), while most low-cost sensors report data
at ambient conditions, leading to discrepancies with
regulatory-grade instruments (including the BAM
instruments used in this work, which are recognized
as federal equivalent methods for PM2.5 mass meas-
urement). As ambient humidity increases, hygroscopic
growth of particles occurs, which increases their light
scattering coefficient (Cabada et al. 2004), and there-
fore the mass reported by optical sensors. Field testing
of low-cost optical PM2.5 sensors has shown the sig-
nificant effect of ambient humidity on their measure-
ments (Jayaratne et al. 2018; Zikova, Hopke, and
Ferro 2017; Zikova et al. 2017). Accounting for such
hygroscopic growth is needed to reduce these humid-
ity effects when comparing the optical sensor to refer-
ence monitors. Further, low-cost optical sensors are
usually limited to measuring particles larger than 0.3
micrometers (Koehler and Peters 2015; Zhou and
Zheng 2016), and so will underreport PM2.5. This
underreporting of small particles by optical PM sen-
sors is corrected for during factory calibration by
adjusting the instrument output to match that of a
reference PM2.5 mass measurement of the same cali-
bration “smoke” (Liu et al. 2017). Differences between
particle size distribution and composition used for the
factory calibration and the ambient aerosol during
deployment can therefore cause further errors.

There are currently no established criteria for
assessing the performance of low-cost PM sensors
(Williams et al. 2019). However, schemes have been
proposed with tiered rankings based on relative data
quality which recognize that different performance

goals may be appropriate for different use cases (e.g.,
Rai et al. 2017; Williams et al. 2014). For example,
while comparison to regulatory standards might
require strict criteria (e.g., accuracy ±10%), supple-
mental monitoring goals including spatial gradient
mapping and microenvironment monitoring may have
intermediate requirements (±25%) while tracking of
sources and distinction of “more polluted” versus “less
polluted” areas for public information purposes may
have lower requirements (±50%) (Williams et al. 2014,
2019). Another scheme distinguishes between qualita-
tive, semi-quantitative, and reasonably quantitative
data (with bias and root mean square deviation below
100%, 50%, and 20%, respectively) suitable for various
use cases (Allen 2018). Knowledge of the capabilities
and limitations of low-cost sensors with respect to dif-
ferent use cases is especially relevant considering that
products such as the PurpleAir sensor are already
used by citizen scientists worldwide (www.pur-
pleair.com).

We consider two use cases in this work. First, sen-
sors may be used, e.g., by community monitoring
groups, to provide information on local air quality in
real-time to support individual decisions, for example
about where to go for a walk in a city to avoid highly
polluted areas. In this case, the goal is to provide
robust indicators, e.g., that PM2.5 is currently higher
in one part of a city than in another, and so less
accurate data (even about ±50%) are considered suffi-
cient. Second, sensors may be used to determine long-
term trends, e.g., for quantifying the exposure of a
population or the impacts of a new pollution-mitiga-
tion policy. In this case, more precise long-term per-
formance (relative accuracy of about ±20%) is
important. Considering that national average PM2.5

concentrations in the United States are on the order
of 10mg/m3 (US EPA 2017), we consider measure-
ments with typical error below about 2 mg/m3 to be
“reasonably quantitative” data, while higher errors (up
to about 5 mg/m3) represent “semi-quantitative” meas-
ures (see Section 2.6 for details on the assessment
metrics employed).

In this paper, we provide evaluations of the long-
term performance of two types of relatively low-cost
(under $2000 for the NPM and $250 for the
PurpleAir) PM2.5 sensors in field conditions in the
city of Pittsburgh, Pennsylvania and its surroundings.
The ambient hourly PM2.5 concentrations for this
study are low (typically below 20mg/m3) compared to
previous field evaluations of these sensors (e.g.,
Jayaratne et al. 2018; Kelly et al. 2017). We also pro-
pose and evaluate both physics-based and fully-
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empirical methods to correct for the influence of
humidity and temperature on sensor readings, thereby
making them more comparable to BAM instrument
data. We have focused our attention on field studies
due to the importance of assessing sensors in a similar
environment to that in which they are to be used
(Piedrahita et al. 2014; White et al. 2012). In
Pittsburgh, like in other urban areas, PM2.5 is com-
posed of regionally transported (aged) aerosol and
fresh vehicular emissions (Tan et al. 2014).
Additionally, a metallurgical coke producing facility is
a major local point source. Hence, we develop a cali-
bration equation through collocation with a reference
monitor at an urban background site that represents
aged background PM and a source-oriented site near
the major point source. We further evaluate these
models across multiple seasons (January 2017 to May
2018) at both locations, as well as at a roadside loca-
tion where vehicular contribution to PM2.5 below the
sensor size cut-point should be highest, and a more
rural location.

2. Methods

2.1. RAMP sensor package and attached
PM2.5 sensors

The Real-time Affordable Multi-Pollutant (RAMP)
monitor is a low-cost sensing system collaboratively
developed by SenSevere and the Center for
Atmospheric Particle Studies at Carnegie Mellon
University (Zimmerman et al. 2018). It incorporates
five gas sensors, electronics, batteries, and wireless
communication hardware. In addition to its internal
sensors, the RAMP can be connected to external
instruments for measuring PM2.5. One such instru-
ment is the Met-One Neighborhood Particulate
Monitor (NPM) sensor, which uses a forward light
scattering laser. The unit is also equipped with an
inlet heater and PM2.5 cyclone. Previous research has
assessed the performance of two of these instruments
over a two-month period in southern California, and
found moderate correlations (r between 0.7 and 0.8)
with regulatory-grade instruments (AQ-SPEC 2015).
The NPM is available for about $2000 or about one
tenth the price of regulatory-grade instruments meas-
uring PM2.5. A total of 50 NPM units have been
deployed alongside RAMPs.

The PurpleAir PM2.5 monitor (PPA) was also
deployed along with the RAMPs. This sensor incorpo-
rates a pair of Plantower PMS 5003 laser sensors,
which provide measures of PM2.5 as well as of PM1.0

and PM10. Previous testing of three of these units

over a two-month period in southern California
showed good correlation (r above 0.9) with regula-
tory-grade instruments (AQ-SPEC 2017). This sensor
is available for about $250, or about one hundredth of
the price of a regulatory-grade instrument. Initial
laboratory testing of a batch of 30 PurpleAir units
found 7 to be defective; these defects were identified
due to low correlations (r< 0.7) between the data pro-
vided by each units’ pair of Plantower sensors. These
defective sensors are not considered in this paper. A
total of 20 PurpleAir units have been deployed with
RAMPs in the Pittsburgh area.

2.2. Data collection

Sensor performance was assessed using data collected
at four field sites - one corresponding to an “urban
background”, one impacted by industrial emissions,
one by vehicle emissions, and one more rural site -
coincident with monitoring stations operated by the
Allegheny County Health Department (ACHD) or
Pennsylvania Department of Environmental
Protection (DEP), at which BAM instruments pro-
vided hourly concentration measurements for com-
parison (Hacker 2017; McDonnell 2017). Although
these instruments are not used for regulatory report-
ing, they are recognized federal equivalent methods
and provide hourly data for Air Quality Index calcula-
tions. This section describes the two sites used for
correction method development and long-term testing.
Two additional regulatory sites which were used to
test the correction methods are described in
Section 3.3.

The “Lincoln” site (AQS#42-003-7004, 40.308�N by
79.869�W) is a “source-dominated” site within 1 km
of a facility producing coke for steel manufacturing
that is the largest primary PM2.5 point source in
Allegheny County. This part of Allegheny County
exceeded the annual and 24-h Environmental
Protection Agency (EPA) PM2.5 standards over
2015–2017 (ACHD 2017). This site is illustrative of a
“fence line” monitoring application, where monitors
are placed in proximity to a known emission source.
Average PM2.5 concentration at this site (based on the
BAM) was 14.5mg/m3 in 2017, with a 1-h maximum
of 162 mg/m3. Here, one NPM sensor was operated for
a total of 294 days from 24 April 2017 until the end of
data collection for this study on 1 June 2018.
Additionally, between 26 October 2017 and 12
February 2018 (109 days), a total of 12 NPM and 2
PurpleAir sensors were collocated at the site (although
not all instruments were active for the entire period).

AEROSOL SCIENCE AND TECHNOLOGY 3



The “Lawrenceville” deployment site (AQS#42-003-
0008, 40.465�N by 79.961�W) is an urban background
site located in an urban residential and commercial
neighborhood, and part of the EPA’s NCore monitor-
ing network (Hacker 2017). Average PM2.5 concentra-
tion at this site (based on the BAM) was 9.7mg/m3 in
2017, with a maximum 1-h concentration of 67mg/m3.
At this site, one NPM sensor was operated for a total
of 380 days between 13 January 2017 and 6 May 2018.
In addition, a total of 25 NPM and 9 PurpleAir sen-
sors were collocated at the site between 30 March
2018 and 4 June 2018 (66 days, although again, not all
instruments were present for the entire period). Five
NPM sensors were collocated at both Lincoln and
Lawrenceville at different times; none of the PurpleAir
sensors were collocated at both sites. A deployment
timeline is provided in the online Supplemental
Information (Figure S2).

Instruments at all sites were connected to RAMP
monitors to allow for cellular data transmission. For
NPM sensors, data associated with instrument error
codes, as well as likely erroneously high readings
(exceeding 10,000 mg/m3) were removed from the
dataset. For PurpleAir sensors, readings from both
internal Plantower sensors were averaged to determine
the PurpleAir reading. Measurements from both types
of sensors were down-averaged from their collection
rate (roughly one measurement every 12 s) to an
hourly rate to allow for comparison with the reference
instruments.

2.3. Physics-based (hygroscopic growth and size
distribution) correction methods

Figure 1 compares the as-reported data from the
NPM and PurpleAir sensors to the BAM instrument
at the Lawrenceville site. There were sizeable

discrepancies (up to 20 mg/m3 in some cases) in the
values, with humidity clearly having an effect. A
method was sought to correct the readings of the low-
cost sensors to better match those of the federal
equivalent BAM instruments. As a starting point, the
hygroscopic growth factor is the ratio of PM at a
given humidity and temperature to that at 22 �C and
35% relative humidity (RH) (the conditions at which
regulatory data are reported), and was calculated as
follows:

fRH T;RHð Þ ¼ 1þ jbulk
aw T;RHð Þ

1� aw T;RHð Þ (1)

The hygroscopicity of bulk aerosol (jbulk) was eval-
uated considering seasonal changes in particle com-
position observed in Pittsburgh; these were accounted
for by dividing the year into summer (May to
September inclusive), winter (November to March
inclusive), and other periods (with the “other” period
using an average of the summer and winter composi-
tions). Within each period, it was assumed that the
aerosol composition and size distribution were con-
stant over time and throughout the urban area.
Seasonal aerosol compositions in the Pittsburgh area
were obtained from Gu et al. (2018), and literature
j-values for the major non-refractory aerosol compo-
nents sulfate, nitrate, ammonium, and organic matter
were used (Cerully et al. 2015; Petters and
Kreidenweis 2007); a sensitivity analysis for this com-
positional information is provided in the results
(Section 3.2) and in the online SI (Section S2). Water
activity was calculated as:

aw T;RHð Þ ¼ RH exp
4rwMw

qwRTDp

� ��1

(2)

where rw; Mw; and qw represent the surface tension,
molecular weight and density of water, respectively; T

Figure 1. Comparison of 1-h-average NPM (a) and PurpleAir (b) as-reported sensor readings to the BAM instrument during colloca-
tion at the Lawrenceville site. Each point indicates the median across all sensors of the given type present at the site. Shades (col-
ors) indicate RH at the time of the measurements. A breakdown of these results by RH is provided in the online SI (Table S2).
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is the absolute temperature, R is the ideal gas con-
stant, RH is ambient relative humidity; and Dp is the
particle diameter (see online SI, Table S1 for details).

Correction of low-cost sensor readings using the
hygroscopic growth factor alone was found to be
insufficient (see online SI, Figure S10), likely due to
differences between the factory calibration aerosols
and ambient aerosol in Pittsburgh. Therefore, the
hygroscopic growth correction was combined with an
additional linear correction:

corrected PM2:5½ � ¼ h1
PM2:5 as reported½ �

fRH T; RHð Þ
� �

þ h0

(3)

The coefficients h0 and h1 were estimated using a
combination of data collected at both the urban back-
ground Lawrenceville and source-dominated Lincoln
sites from half of the sensors deployed to each site
(the “training” set). Correction model performance
was evaluated on the other half of sensors at these
sites (the “testing” set), as well as at independent sites
(see Section 3.3). Coefficients were set using typical
linear regression techniques, minimizing the error

between the corrected sensor measurements and the
collocated BAM instrument at each site. These coeffi-
cients were estimated separately for the different time
periods (summer, winter, other) for each of the low-
cost sensor types (NPM, PurpleAir). This was neces-
sary to account for the different responses of each
type of sensor. For example, seasonal changes in par-
ticle size distributions led to changes in the h0 term as
more or less of the PM fell below the 300 nm detec-
tion size cut-point for optical sensors.

2.4. Empirical correction methods

The hygroscopic growth factor correction method
described above was based on information about the
specific aerosol chemical composition of the sensor
deployment area, which may not be available at all
locations. However, since factors such as temperature
and RH are more readily available, other more gener-
alizable, empirical correction equations were devel-
oped using these data. Dewpoint (DPÞ was considered
as a factor related to condensation that might serve in

place of the hygroscopic growth factor; temperature
(TÞ and RH were also considered. Various combina-
tions of the as-reported sensor readings and the above
environmental parameters were fit using linear and
quadratic regression models to correct the data. The
forms of the empirical corrections were selected by
trading off performance (across a range of concentra-
tions experienced at both collocation sites) against
functional complexity (details are provided in the
online SI, Section S3). For NPM sensors, a quadratic
function of the sensor reading, temperature, and
humidity was selected:

corrected PM2:5½ �NPM ¼ a0 þ a1 PM2:5½ �NPM þ a2T

þ a3RH þ a4 PM2:5½ �2NPM
þ a5 PM2:5½ �NPMT
þ a6 PM2:5½ �NPMRH
þ a7T

2 þ a8TRH þ a9RH
2

(4)

The form selected for PurpleAir sensors was a two-
piece linear function of the sensor reading, T, humid-
ity, and DP, with a threshold at 20mg/m3:

Coefficients calibrated for these equations (using
standard regression techniques) along with their
uncertainties are provided in the online SI (Table S4).

2.5. In-field drift-adjustment

A seemingly random, non-monotonic fluctuation (e.g.,
a “random walk”) taking place over a period of weeks
or months was observed in field-deployed NPM sen-
sors when Equation (4) is applied (see online SI,
Figure S6). The reason for this was likely due to sea-
sonal changes in aerosol properties and/or sensor
behaviors which were not captured by this equation.
This was observed to affect monthly average PM2.5

readings by up to 4mg/m3 at the Lawrenceville and
Lincoln sites. Insufficient data were available to assess
whether the same phenomenon occurs for PurpleAir
sensors. We propose three methods to adjust for this
drift in sensor response over the course of their field
deployment. Note that here we use “drift” to refer to
any changes in the baseline or “zero” reading of
the sensor.

corrected PM2:5½ �PPA ¼ b0 þ b1 PM2:5½ �PPA þ b2T þ b3RH þ b4DP T; RHð Þ if PM2:5½ �PPA > 20lg=m3

c0 þ c1 PM2:5½ �PPA þ c2T þ c3RH þ c4DP T; RHð Þ if PM2:5½ �PPA � 20lg=m3

�
(5)
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The first adjustment method, known as the
“Deployment Records” (DR) method, involved using a
log of sensor deployment history to account for biases
against a reference instrument. This method involved
adjusting the measurements of all sensors to match
that of one “benchmark” sensor during periods when
sensors were collocated. The benchmark sensor was
then collocated with a regulatory-grade instrument
while other sensors were deployed in the field. The
relative bias of a deployed sensor versus the regula-
tory-grade instrument was then estimated using the
benchmark as an intermediary (i.e., the biases of all
sensors versus the benchmark were assessed during
their collocations, and the bias of the benchmark ver-
sus the regulatory-grade instrument was assessed dur-
ing its collocation; the bias of any deployed sensor
versus the regulatory-grade instrument was then esti-
mated as the sum of the above biases). The second
method, known as the “Fifth Percentiles” (5P)
method, involved computing the monthly 5P of read-
ings at a given deployment site, and then comparing
to the 5P recorded at the nearest regulatory monitor-
ing station. Readings from the deployed sensor were
then adjusted so that these percentiles matched. This
was done with the assumption that the 5P represented
a “background” level to which all sites in the region
were subject. The third method was a variation of the
5 P method, known as the “Average of Low readings”
(AL) method, which used the average of all readings
in a month below 5 mg/m3 as the target value to be
matched. All three methods relied on the availability
of relatively frequent (e.g., hourly) data from regula-
tory-grade instruments, and the first method relied on
historical collocation data with these instruments.
Diagrams depicting each of these proposed methods
are provided in the online SI (Figure S7). The latter
two methods of rectifying drift by matching distribu-
tion parameters over time are similar to those pro-
posed by Tsujita et al. (2005) and used by Moltchanov
et al. (2015).

2.6. Assessment metrics

To evaluate the performance of a sensor as compared
to a reference (typically a regulatory-grade instru-
ment), the bias, mean absolute error, and correlation
coefficient (r) statistics were used (details are provided
in the online SI, Section S5). Performance of the
instruments was also assessed from a classification
perspective, using the EPA’s National Ambient Air
Quality Standards 24-h standard of 35mg/m3 (www.
epa.gov/criteria-air-pollutants/naaqs-table) as a

representative threshold, by assessing how often the
sensor agreed with a reference instrument as to
whether this concentration was surpassed. This deter-
mination was made on an hourly basis for this assess-
ment, while the regulation cited above applies to daily
averages. This comparison was therefore conservative,
and we would expect better performance for daily
averages based on the results of Section 3.6.
Classification precision indicates the fraction of values
of concentration c above threshold s detected by the
sensor which were also detected by the reference:

classification precision ¼
Pn

i¼1 I ci>sð ÞI ĉi>sð ÞPn
i¼1 I ci>sð Þ � 100%

(6)

where ci is the reading of the sensor and ĉi the read-
ing of the reference instrument at time i of n; and I is
the indicator function, taking on value 1 when its
argument is true and 0 otherwise. Classification recall
is the fraction of instances detected by the reference
instrument which were also detected by the sensor:

classification recall ¼
Pn

i¼1 I ci>sð ÞI ĉi>sð ÞPn
i¼1 I ĉi>sð Þ � 100%

(7)

Therefore, classification precision describes how
often an event detected by the sensor actually
occurred (assuming the reference instrument reading
was the “true” concentration) while recall describes
the fraction of actual events which were detected by
the sensor. Values of these metrics close to 100% indi-
cate better performance.

3. Results

In this section, first, the mutual consistency of the as-
reported data from the low-cost PM sensors is quanti-
fied, to address how comparisons might be made
without applying corrections. Second, the quantitative
performance of the proposed correction methods is
assessed for the short-term use case envisioned for
these sensors. Finally, the long-term performance of
these sensors is analyzed, including contributions of
the proposed drift-adjustment methods.

3.1. Consistency between sensors

To determine the consistency between sensors, pair-
wise comparisons of 1-h-averaged data were made
among NPM and PurpleAir sensors (i.e., NPM with
NPM and PurpleAir with PurpleAir) collocated at
either the Lawrenceville or Lincoln site during the
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same period. At Lawrenceville, during the RAMP col-
locations, temperature varied between �20 and
þ31 �C and RH varied from 22% to 97%; at Lincoln,
temperature varied from �3 to þ43 �C and humidity

varied between 17% and 97% (as measured by the
RAMPs’ onboard sensors). Figure 2 presents the
results of these inter-comparisons; only results for
sensors collocated for at least 3 days (72 1-h averages)

Figure 2. Inter-comparison of as-reported 1-h-average data between sensors during collocation periods at both sites. In the boxplots,
circles with dots denote the median, thick bars denote the interquartile range, and thin bars denote the 95% confidence range. Black
boxplots indicate metric ranges for pairs of NPM sensors, and gray (purple) boxplots indicate ranges for pairs of PurpleAir sensors. This
represents 114 NPM pairs at Lawrenceville, 66 NPM pairs at Lincoln, 16 PurpleAir pairs at Lawrenceville and 1 PurpleAir pair at Lincoln.
For reference, the ranges of concentrations measured by BAM instruments at the sites during the same time are depicted in (d).

Figure 3. Comparison between medians of as-reported 1-h-average data of 25 NPM and 9 PurpleAir sensors during collocation at
the Lawrenceville site. Shades (colors) indicate RH at the time of the measurements.
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are presented. Overall, mutual correlations were strong
(typically r > 0:9) and were higher at the Lincoln site
likely due to the wider range of concentrations.
Absolute differences in as-reported readings were typic-
ally about 2mg/m3 or less, which includes systematic
biases between sensors generally on the order of ±1mg/
m3. This is similar to prior results for Alphasense OPC-
N2 optical PM2.5 sensors, which are more than twice
the price of PurpleAir units (Crilley et al. 2018).

Figure 3 compares hourly averages of as-reported
data from NPM sensors at Lawrenceville to those col-
lected by PurpleAir sensors at Lawrenceville as a func-
tion of humidity (the median readings of all sensors
active at the site at the same time are shown). At low
humidity, PurpleAir readings were about twice that of
the NPM, while at high humidity the ratio of readings
approached one; comparisons made between raw read-
ings of the two sensor types would therefore be heavily
humidity-dependent. There are several likely causes for
these differences. First, the NPM possesses an inlet
heater with a 4-s residence time which activates when
RH exceeds 40%. However, this residence time may not
be sufficient to totally remove humidity effects on the
NPM. Second, these instruments are calibrated differ-
ently. The NPM is calibrated with 0.6 mm polystyrene
latex spheres (Met One 2018), while PurpleAir
Plantowers are calibrated with ambient aerosol across
several cities in China (Wang 2019). They therefore
respond differently when exposed to a common aerosol
which differs from their calibration aerosols.

3.2. Correction of low-cost sensors towards a
federal equivalent method

Figure 4 plots median hourly-average readings from
NPM and PurpleAir sensors collocated at the

Lawrenceville site corrected using Equation (3) against
the ACHD regulatory-grade (BAM) instrument read-
ings. This correction decreased MAE by about 40%
for both NPM and PurpleAir sensors with respect to
their as-reported values and reduced bias significantly,
but there was still noticeable measurement noise (r
�0.75) about the identity line.

Figure 5 assesses the performance of the designated
“testing” set of low-cost sensors deployed to the
Lawrenceville and Lincoln sites during the March to
June (at Lawrenceville) and October to February (at
Lincoln) collocation periods. The figure compares as-
reported data to data corrected using the hygroscopic-
growth-based approach of Equation (3) (with appro-
priate coefficients for NPM or PurpleAir sensors) and
data corrected using the fully-empirical approaches of
Equation (4) for NPM or Equation (5) for PurpleAir.
In all cases hourly-averaged data were used. In terms
of correlation (Figure 5a), no improvement was made
for PurpleAir sensors, while only a modest improve-
ment resulted from correction of the NPM sensors. In
terms of MAE (Figure 5b) and bias (Figure 5c), how-
ever, both correction approaches resulted in noticeable
improvements. For NPM sensors, both the physics-
based Equation (3) and fully-empirical Equation (4)
gave comparable performance. For PurpleAir sensors,
the fully-empirical approach of Equation (5) provided
a smaller spread of MAE and bias results as compared
to Equation (3), while the median MAE of both
approaches were almost the same, and the median
bias of Equation (5) was slightly worse. Overall both
correction approaches improved upon the as-reported
data and there was no significant difference between
their performances.

Table 1 presents the calibrated coefficients for the
approach of Equation (3) for both NPM and

Figure 4. Comparison of 1-h-average NPM (a) and PurpleAir (b) sensor readings to the BAM instrument during collocation at the
Lawrenceville site after correction using Equation (3), with appropriate coefficients for NPM and PurpleAir. Each point indicates the
median across all sensors of the given type present at the site (including both “training” and “testing” sensors). Shades (colors)
indicate RH at the time of the measurements. A breakdown of these results by RH is provided in the online SI (Table S3).
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PurpleAir sensors during the summer, winter, and for
other periods (calibrated coefficients for Equations (4)
and (5) are provided in the online SI, Table S4). Note
that for both NPM and PurpleAir sensors, the value
of h0 (the linear intercept term) was larger in summer
than in winter. This could be explained by the fact
that during summertime in Pittsburgh, as in most
urban areas (Asmi et al. 2011), particles smaller than
300 nm optical diameter are a larger fraction of PM2.5

(see the online SI, Figure S9), necessitating a larger
correction. For h1 (the linear slope term), while the
values for summer and winter were the same for
NPM sensors, for PurpleAir sensors the value was
higher in the winter. However, the hygroscopic
growth factor (for the same temperature and RH) was
also higher in winter, as winter-time aerosol has a
larger contribution from more hygroscopic inorganic
aerosol. Thus, the net result was a lower impact of
seasonal changes in the hygroscopic growth factor on
the PurpleAir readings, indicating that the PurpleAir
sensor may be less susceptible to humidity-driven
changes. The internal structure of the PurpleAir unit

may contribute to this; the plastic shell enclosing the
Plantower sensors and associated electronic circuits
can trap heat inside the unit, leading to lower RH
within the device. During tests at the Lawrenceville
site, RH inside the PurpleAir was found to be 9.7
percentage points lower on average than outside,
while T was 2.7 �C higher.

3.3. Performance assessment at other
regulatory sites

To further assess the performance of these sensor cor-
rections at locations independent of where they were
developed, several sensors were tested at two add-
itional sites. The “Parkway East” site (AQS#42-003-
1376, 40.437�N by 79.864�W) represents a roadside
location (Hacker 2017), and thus may have a different,
vehicular traffic-influenced particle composition and
size distribution than either the urban background or
coke oven-impacted sites at which the corrections
were developed. Between 6 and 27 September 2018
(21 days), two PurpleAir sensors were collocated at
this site. Data from these sensors were corrected using
Equation (3). These provided comparable results to
testing at the Lincoln and Lawrenceville sites (median
r of 0.71, median MAE of 2.7 mg/m3, median bias of
0.36 mg/m3). For reference, the average concentration
at this site during the same time was 10.6mg/m3.

The “DEP Johnstown” site (AQS#42-021-0011,
40.310�N by 78.915�W) is in Cambria county, about
90 kilometers east of Pittsburgh (McDonnell 2017).

Figure 5. Performance metrics of 1-h-average as-reported and corrected sensor data compared to BAM instruments during colloca-
tion at both the Lawrenceville and Lincoln sites. Results shown relate to a total of 17 NPM and 5 PurpleAir sensors of the “testing”
set. Corrections are performed using either the approach of Equation (3), with appropriate coefficients for NPM or PurpleAir, or the
approaches of Equation (4) for NPM and Equation (5) for PurpleAir.

Table 1. Calibrated coefficients for Equation (3). Values fol-
lowing “6” represent the standard deviations in the coeffi-
cient estimates.

Met-One NPM PurpleAir PPA

h0 Summer 5:2860:09 lg=m3 5:460:4 lg=m3

Winter 2:0360:08 lg=m3 �0:360:2 lg=m3

Other 1:6860:13 lg=m3 3:760:1 lg=m3

h1 Summer 1:5060:01 0:6260:03
Winter 1:5060:01 1:2560:01
Other 1:7660:02 0:8360:01
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While possessing a similar overall climate to
Pittsburgh, it represents a more rural site. From 3 to
6 April 2017 (3 days), a single NPM sensor was
deployed at this site. Data from this sensor was cor-
rected using Equation (3), and gave performance
within the ranges observed at the other sites (r of
0.62, MAE of 1.9 mg/m3, bias of �0.99 mg/m3). For ref-
erence, the average concentration at this site during
the same time was 6.2 mg/m3.

3.4. Sensitivity analysis to aerosol composition

Since hygroscopic growth is composition dependent
(Petters and Kreidenweis 2007), different aerosol com-
positions may experience different rates of growth.
While the hygroscopic growth correction method dis-
cussed earlier used aerosol composition data from
Aerosol Mass Spectrometer (AMS) measurements, not
all locations have such data. However, aerosol com-
position data is also collected on a regular basis (one
24-h sample every three to six days) by regulatory
agencies such as the US EPA, and the data are pub-
licly available (https://aqs.epa.gov/aqsweb/airdata/
download_files.html). For example, aerosol compos-
ition data from Washington County, a site 35 kilo-
meters from Pittsburgh, was used as a proxy for
Pittsburgh aerosol composition; this resulted in a dif-
ference of less than 1% in the corrected PM2.5 concen-
tration values. A sensitivity analysis for the
hygroscopic-growth-based correction approach with
respect to aerosol composition was also performed
using a range of plausible compositions from the EPA
Chemical Speciation Network (US EPA 2019). Full
details are provided in the online SI (Section S2).
Briefly, the organic component fraction varied from 0.
3 to 1, the sulfate component varied from 0 to 0.8,
nitrate varied from 0 to 0.8, and ammonium varied
from 0 to 0.3. Overall, using this range of alternate
chemical composition information in Equation (3)
changed the resulting corrected PM2.5 concentrations
by up to 10% for typical cases, and up to 25% in
extreme cases (see online SI, Figure S5). Thus, for US
sites where no local composition information is avail-
able, publicly-available information from the nearest
site in the EPA network can be used. A similar
approach may be possible for other countries.

3.5. Short-term performance

The US EPA has a short-term standard for PM2.5

based on 24-h average concentrations, set at 35mg/m3

(US EPA 2016a). We use this concentration level to

test the performance of these low-cost sensors under a
short-term use case, where they might be used to alert
citizens to potentially unhealthy outdoor conditions.
Although the EPA standard applies to a 24-h average
concentration, we test the performance of the low-cost
sensors using 1-h averages in order to better mimic a
near real-time alert scenario. This test is performed
for the Lincoln site only since hourly concentrations
at Lawrenceville surpassed the threshold less than 1%
of the time. True positives occurred when both the
NPM sensor (corrected using Equation (3)) and BAM
detected an event (i.e., an hour when the average
PM2.5 concentration was higher than 35 mg/m3); false
positives were when only the NPM measured the
event, and false negatives when the NPM failed to
detect an event seen by the BAM. The classification
precision (Equation (6)) of the sensor was 85% and its
classification recall (Equation (7)) was 71% at the
Lincoln site; for comparison, these values were 61%
and 78% respectively for the un-corrected, as-reported
NPM data. Of the misclassifications, 15% occurred
when the BAM measured average concentrations
between 30 and 40 mg/m3; the rest represented larger
discrepancies between the instruments. A 1 h “grace
period” was also considered, i.e., if an event detection
by one instrument leads or trails the other by up to
an hour, this was still counted as a true positive. With
this grace period, the classification precision was 90%
and classification recall was 97%, versus 73% and 97%
respectively for the uncorrected data. A graphical
presentation of the results is provided in the online SI
(Figure S16).

3.6. Long-term performance

Long-term assessment is necessary to categorize bias
and assess data quality after extensive field use of sen-
sors. Additionally, long-term deployments can be used
to generate data for epidemiological studies, to evalu-
ate different air quality models, and for verification of
satellite retrievals, which rely on sparse networks of
expensive reference monitors. Previous studies of
lower-cost optical particle counters operating for up
to four months report no evidence of significant drift
(Crilley et al. 2018). The long-term performance of
NPM sensors was assessed using data collected by the
two sensors deployed at the Lawrenceville and Lincoln
sites for a much more extended period (e.g., more
than a year of data at Lawrenceville collected over a
16-month span). First, data corrected using Equation
(4) were used to assess the in-field drift-adjustment
methods proposed in Section 2.5 to eliminate the
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“random walk” behavior observed when this correc-
tion approach was used over long periods. Based on
these results, the “average of low readings” method
worked best, reducing both the median bias and
spread in biases at the Lawrenceville site. However,
there were no clear improvements for these metrics at
the Lincoln site (see online SI, Figure S8).

Figure 6 plots the MAE of the corrected sensor
data with and without drift-adjustment (using the AL
method) compared to the associated regulatory-grade
instrument, as a function of averaging period. For
weekly averages error was below about 2 mg/m3. For
annual averages, errors were about or below 1mg/m3,
which is about 10% of the annual average concentra-
tions for Pittsburgh. Drift-adjustment of measure-
ments corrected with the fully-empirical Equation (4)
improved the performance at the Lawrenceville site
(where concentrations are typically lower) to exceed
that of Equation (3); here, the errors fall below 1 mg/
m3 for quarterly or seasonal averages. At the Lincoln
site the drift-adjustment method tended to do noth-
ing, or to slightly increase errors; this indicates that
drift adjustment may not be required (or even suit-
able) for all locations or all sensors.

4. Discussion

Testing of a relatively large number of NPM (25 sen-
sors at the Lawrenceville site) and PurpleAir (9 sen-
sors at the Lawrenceville site) low-cost PM2.5 sensors
showed high mutual consistency between the sensors,

with mean inter-unit disagreement typically below
2.5 mg/m3 and correlation typically higher than 0.9.
Systematic biases between instruments appear to
account for the largest fraction of the absolute differ-
ences; such biases may be assessed before and after
field deployment using collocations, but this may not
fully account for in-field differences due to changes in
aerosol composition, size distributions, and electronic
sensor performance variability over time (see online
SI, Section S2).

The first proposed correction equation was
designed to account for two of the main factors con-
tributing to differences between optical measurements
and the BAM instrument readings (which report
PM2.5 mass at a fixed temperature and RH). First, a
hygroscopic growth factor was used to account for the
increase in measured particle mass due to ambient
humidity. Second, a linear correction was applied to
account for mismatches between the size distribution
and chemical composition of the factory calibration
aerosol and the ambient aerosol to be measured. We
also evaluated alternative empirical correction equa-
tions which did not rely on the assumptions necessary
for estimating hygroscopic growth. For both NPM
and PurpleAir sensors, both correction approaches
achieve similar performance, although even following
correction, relatively large uncertainties in hourly
averages (MAE of 3–4 mg/m3) were observed with
respect to the BAM regulatory-grade instruments.
This lack of consistency with BAM instruments has
also been observed previously (e.g., Zheng et al. 2018)

Figure 6. Mean absolute error in PM2.5 measurements for two NPM sensors during long-term deployments as a function of aver-
aging period (note the differing horizontal axis scale on either side of the vertical black line). Solid lines represent measurements
corrected using Equation (3); dotted lines indicate measures corrected using Equation (4) but not drift-adjusted; dashed lines indi-
cate measures corrected using Equation (4) and drift-adjusted using the AL method. Points along the lines indicate which specific
averaging times were evaluated.
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and may not be reconcilable with current low-cost
optical sensors. However, as data were averaged over
longer periods, accuracy was improved; longer-term
(1 year or even seasonal) averages were likely to have
errors below 1 mg/m3 (or about 10% of long-term
average concentrations).

The proposed correction approaches handle aerosol
chemical composition in different ways. For the hygro-
scopic-growth-based correction approach, sensitivity of
the results to compositional variations was analyzed
and found to only have a small effect in most cases
(see online SI, Section S2). For the empirical approach,
differing performance due to varying chemical com-
position is not evaluated explicitly; however, its contri-
bution is part of the overall error associated with this
method, assessed both in the short-term (contributing
to the MAE and bias noted in Figure 5) and in the
long-term (contributing to the monthly bias noted for
the “no drift adjustment” method).

The efficacy of several proposed in-field drift-
adjustment methods were also evaluated on two low-
cost sensors. The AL method adjusted for drift in the
NPM sensor deployed at the Lawrenceville site,
improving its performance (see Figure 6). The same
method made little impact for the Lincoln site. This
could indicate either that the Lincoln sensor did not
experience significant drift, and therefore was not in
need of adjustments, or that such drift was not
adjusted for by the method. Overall, while corrections
may be needed for in-field sensor drift, more research
and in-field verification of drift-adjustment methods
are needed.

The NPM (with or without correction) detected
97% of occurrences when the BAM recorded PM2.5

higher than 35 mg/m3. However, 27% of values above
35 mg/m3 in the uncorrected low-cost sensor data were
not observed by the BAM. The corrections presented
here (Equation (3)), which account for aerosol hygro-
scopic growth, reduced this error to 10%.
Additionally, short-term performance of the sensors
after corrections met EPA recommendations for edu-
cational or informational monitoring activities
(Williams et al. 2014) (see online SI, Figure S14).
Together, these results indicate the potential for these
sensors (after accounting for humidity effects) to be
used for semi-quantitative assessments of relative
short-term air quality in different neighborhoods. The
high level of mutual consistency and ability (with suit-
able corrections) to provide reasonably quantitative
averages over longer periods of time also makes these
low-cost sensors useful for large-scale mapping

campaigns to determine long-term spatial patterns
and temporal trends in PM2.5.

The small size and ease of deployment of these
units make them well suited to urban monitoring.
The low-cost (sub-$250 each) PurpleAir sensors also
incorporate a pair of optical sensors, allowing for
internal self-consistency checks to flag possible erro-
neous data. The cyclone and inlet heater of the (sub-
$2000 each) NPM sensors can protect the units from
excessive dust and humidity (to which PurpleAir sen-
sors, which lack these features, may be more suscep-
tible during longer deployments). Finally, we note that
these results are determined for the specific environ-
ment of Pittsburgh, Pennsylvania; however, they can
be generalized to other areas in developed or
Organization for Economic Cooperation and
Development (OECD) countries which are character-
ized by annual PM2.5 mass concentrations less than
20 mg/m3 and across both urban background (e.g.,
Lawrenceville) and source-impacted (e.g., Lincoln and
Parkway East) sites. Especially for the Plantower
(PurpleAir) sensor, for which a two-part correction
equation was found optimal even within the range of
PM2.5 concentrations observed in Pittsburgh, the
response may be different at higher concentrations
found in developing countries like India or China.
Similar to low-cost electrochemical gas sensors, which
are designed to operate at higher concentrations and
therefore require specialized calibrations for lower
ambient concentrations (e.g., Malings et al. 2019),
these low-cost PM2.5 sensor may operate well using
factory calibrations in high-concentration environ-
ments, but require additional corrections such as
those presented here at lower ambient concentrations.

Considering future low-cost PM2.5 sensor deploy-
ments, the use of correction Equation (3) is recom-
mended where information on particle composition is
available (whether for the area in question or for a
nearby area with similar characteristics); otherwise,
Equation (4) or (5) can be used. The coefficients pre-
sented here for those corrections can be used as a
starting point. Where possible, however, new coeffi-
cients should be determined via collocation with regu-
latory-grade instruments to account for local
conditions, and depending on local conditions, further
drift adjustments using the techniques presented here
(or others) may be necessary.
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